Lecture 23

Introduction to Dynamic Programming

Source: Introduction to Algorithms, CLRS

Introduction to Dynamic Programming

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea:

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Let’s learn DP through an example!

Rod Cutting

Rod Cutting

Rod-Cutting:

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n]

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example:

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4

I/

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for a length 4 rod:

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for a length 4 rod:

Profit earned:

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for a length 4 rod: (4)

Profit earned: ¢

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for a length 4 rod: (4) (1,3)
Profit earned: ¢ 0

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for alength 4 rod: (4) (1,3) (2,2)
Profit earned: ¢ 0 10

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for alength4rod: (4) (1,3) (2,2) (1,1,2)
Profit earned: ¢ 0 10 7

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for alength4rod: (4) (1,3) (2,2) (1,1,2) (1,1,1,1)
Profit earned: ¢ 0 10 7 4

Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for alength4rod: (4) (1,3) (2,2) (1,1,2) (1,1,1,1)
Profit earned: ¢ 0 10 7 4

\

Maximum profit

Brute Force Solution

Brute Force Solution

Brute force approach:

Brute Force Solution

Brute force approach:

e Find all possible cuttings of the length 7 rod.

Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Time Complexity:

Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every ith inch.

Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every ith inch. Generating all cuttings this

Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every ith inch. Generating all cuttings this

way can lead to O(2") time.

Towards a Better Algorithm

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, =

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] +

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] + profit, _.

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] + profit, _.
W~

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] + profit, _.
W~

4

Price of the first cut

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] + profit, _.

4

Price of the first cut

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the tirst cut in optimal cutting is 7, then profit, = pli] + profit, _.

~— N\

Price of the first cut For the remaining (n — i) length rod,

we cannot get more than profit, ..

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p[2] + profit,_,

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p[2] + profit,_,

f length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p[2] + profit,_,

f length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p[2] + profit,_,

f length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_

It length of the tirst cut in optimal cutting is n (i.e. no cut is made), then profit, = p|n]

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p|2] + profit,_,

It length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_»

It length of the tirst cut in optimal cutting is n (i.e. no cut is made), then profit, = pln]

Towards a Better Algorithm

Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p|2] + profit,_,

It length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_»

It length of the tirst cut in optimal cutting is n (i.e. no cut is made), then profit, = pln]

profit, is maximum of these

A Recursive Solution

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,

e profit, =p|l],itn =1

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):

1. ifn==

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
1. ifn ==

2. return p| 1]

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):

1. ifn==

2. return p| 1]
3. profit = p|n]

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
1. ifn==
return p| 1]

2
3. profit = p|n]
4. fori=1ton—1

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
1. ifn ==

2. return p| 1]

3. profit = p|n] i is the length of the first cut

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,

e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
1. ifn ==

2. return p| 1]

3. profit = p|n] i is the length of the first cut

5. profit = Max(profit, pli] + RC(n — i, p))

A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
if n ==

return p| 1]

1

2.

3. profit = p|n] i is the length of the first cut
4. fori=1ton—1 <

S.

6

profit = Max(profit, pli]| + RC(n — i, p))
return profit

All Good?

All Good?

Even this recursive algorithm RC is slow and takes O(2") time.

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC:

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.p)

RC(n, p):

1. ifn==1

2 return p| 1]

3. profit = p|n]

4, fori=1ton—1
5 profit = Max(profit, pl[i] + RC(n — i, p))
6. return profit

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(4,p) RC@?)\‘\RC(ZP)) RC(L,p)
RC(n, p):

1. ifn==

2 return p| 1]

3. profit = p|n]

4, fori=1ton—1

5 profit = Max(profit, pl[i] + RC(n — i, p))
6. return profit

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.p)

\\\>

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(4,p) RC@?)\‘\RC(ZP)) RC(L,p)

—/ \

RC(3,p) RC(2,p) RC(l,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(3,p) RC(2,p) RC(1,p)

/ "\

RC(2,p) RC(l,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(3,p) RC(2,p) RC(1,p)

/ "\

RC(2,p) RC(l,p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(3,p) RC(2,p) RC(1,p)

/ N\

RC(2,p) RC(l,p) RC(1,p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5,p)
RC(3.p) RC(2,p) RC(l,p) RC(2,p) RC(1,p)

/ N\

RC(2,p) RC(l,p) RC(1,p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Ré(s,m\‘\mz,m‘kca,p)
— N\
RC(3,p) RC(Z,p/) EC(I,p) RC(Z;{ RC(1,p)
RC(Zi) \R‘C(l,p) lé(l,p) RC({p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Ré(s,m\‘\mz,m‘kca,p)
— N\
RC(3,p) RC(Z,p/) EC(I,p) RC(Z;{ RC(1,p) R>(1,p)
RC(Zi) \R‘C(l,p) lé(l,p) RC({p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Rézma)\‘\m:@,p)‘m(l,p)
— N\
RC(3,p) RC(Z,p/) EC(I,p) RC(Z;{ RC(1,p) R>(1,p)
RC(Zi) \R‘C(l,p) lé(l,p) RC({p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Réma)\‘\m:@m‘m(l,p)
— N\
RC(3,p) RC(Z,p/) EC(I,p) RC(Z;{ RC(1,p) R>(l D)
Rc<2é> \R‘ca,p) 1}:‘<1,p> Rcé[,p)

/

RC(1,p)

All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Réma)\‘\m:@m‘m(l,p)
— N\
RC(3,p) RC(Z,p/) }C(l,p) RC(Z;{ RC(1,p) R>(l,p)
Rc<2é> \R‘ca,p) 1}:‘<1,p> Rcé/,p)
RC(jl,p)

Observation: RC(3,p) and RC(2,p) is getting computed from scratch multiple times.

Dynamic Programming Enters

Dynamic Programming Enters

Idea:

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

profit|l : n] = {p|l],—1,...,— 1}

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[1 : n] = {p[l],—-1,..., =1} N__-l

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[1 : n] = {p[l],—-1,..., =1} N__-l
RC(n, p):

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[l : n] = {p[l],—1,..., =1} N__-l
RC(n, p):
1. if profit[n] # —1

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profifll : n] = {p[1],— 1,...,— |} e———
RC(n, p):
1. if profitln] # -l e —ouou______ p. it of n length rod is already computed

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[1 : n] = {p[l],—-1,..., =1} N’;
RC(n, p):

1. ifprofitln] # -l e—o—ou____ b it of n length rod is already computed
2. return profit[n]

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[1 : n] = {p[l],—-1,..., =1} N’;
RC(n, p):

1. ifprofitln] # -l e—o—ou____ b it of n length rod is already computed
2. return profit[n]

3. profitln] = p|n]

length rod is not computed yet

Dynamic Programming Enters

Idea: 1) Define an array profit|1 : nj
2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for
profill :n] = {plll,. - 1,... - 1} &—— | length rod is not computed yet
RC(n, p):
1. if profitln] # — | ——u__ prifit of n length rod is already computed
2. return profit[n]
3. profitln] = p|n]
4, fori=1ton—1

Dynamic Programming Enters

Idea: 1) Define an array profit|1 : nj
2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[l : n] = pll], = 1,..., =1} i length rod is not computed yet
RC(n,p):
1. if profitln] # -1 e—ouuro_ Profit of n/length rod is already computed

2. return profit[n]
3. profitln] = p[n] I is the length of the first cut

Dynamic Programming Enters

Idea: 1) Define an array profit|1 : nj
2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[l : n] = pll], = 1,..., =1} i length rod is not computed yet
RC(n,p):
1. if profitln] # -1 e—ouuro_ Profit of n/length rod is already computed

2. return profit[n]
3. profitln] = p[n] I is the length of the first cut

5. profit|ln] = Max(profit[n], pli] + RC(n — i, p))

Dynamic Programming Enters

Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[l : n] = {p[1],— 1,...,— |} e——— .
RC(n, p):
if profitln] # -l €—wo—_____ p fit of n length rod is already computed

length rod is not computed yet

return profit[n]

profitln] = p[n]

1

2

3. 1 is the length of the first cut
4., fori=1ton—1 —

5

6

profit|n] = Max(profit|n], pli] + RC(n — 1, p))
return profit|n]

Time Complexity of RC

profit|l : n] = {p[l],—-1,...,—1}
RC(n,p):

1. if profitin] # —1

2 return profit[n]

3. profitln] = p|n
4, fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

profit]1 : n] = {pll], - 1,...., -1}
RC(n,p):

1. if profitn] # —1

2 return profit[n]

3. profitln] = p|n
4, fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
profit[l : n] = {pll], - 1,..., -1}
RC(n,p):
1. if profitn] # —1
2 return profit[n]
3. profitln] = p|n
4., fori=1ton—1
S
6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,

profit[l : n] = {pll], - 1,..., -1}
T(l) = C RC(n, p):

1. if profitn] # —1
2 return profit[n]
3. profitln] = p|n
4., fori=1ton—1
S
6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
profit|l : n] = {p[l],—-1,...,—1}
T(l) = C RC(n,p):
if profit|n] # —1
Tn)=c'+ On)+1T(n—1)

return profit|n]

1

2

3. profitln] = p|n
4., fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
. return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
profit|l : n] = {p[l],—-1,...,—1}

T(l) = C RC(n,p):
if profit|n] # —1
Tn)=c'+ On)+1T(n—1)

/

Cost of line 1,2,3, & 6

return profit|n]

1

2

3. profitln] = p|n
4., fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
Cost of RC(n — 1,p) profit[1 : n] = {p[1],-1,...,— 1}
I(l) =c l RC(n, p):
P g NS

if profit|n] # —1
Tn)=c'+ On)+1T(n—1)

/

Cost of line 1,2,3, & 6

return profit|n]

1

2

3. profitln] = p|n
4., fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p) Call to RC(n — 1,p) computes profit[1 : (n — 1)]
Then, /
Cost of RC(n — 1,p) profit[1 : n] = {p[1],-1,...,— 1}
I(l) =c l RC(n, p):
P~

if profit|n] # —1
Tn)=c'+ On)+1T(n—1)

/

Cost of line 1,2,3, & 6

return profit|n]

1

2

3. profitln] = p|n
4., fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p) Call to RC(n — 1,p) computes profit[1 : (n — 1)]
Then, /
Cost of RC(n — 1,p) profit[1 : n] = {p[1],-1,...,— 1}
I(l) =c l RC(n, p):
P~

if profit|n] # —1
Tn)=c'+ On)+1T(n—1)

/

Cost of line 1,2,3, & 6

return profit|n]

1

2

3. profitln] = p|n
4., fori=1ton—1
S

6

profit[n] = Max(profit[n], pli] + RC(n —i,p))
return profit|n]

Cost of for loop fromi=2ton—1

as RC(n — i, p) will return immediately.

Time Complexity of RC

Let 7(n) denote the runtime of RC(#n, p)
Then,

(1) =c

Tn)y=c'+ O(n)+T(n—1)

Time Complexity of RC

Let 7(n) denote the runtime of RC(#n, p)
Then,

(1) =c

Tn)y=c'+ O(n)+1T(n—1)

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
T(1) = ¢
T(n) =’ + O(n) HTn—1)
=c'+ O(n) +He'+Om— 1)+ T(n-2)

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)
=c'+ O+’ +Omn—1)+c' +0m —2) + T(n — 3)

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)
=c'+ O+’ +Omn—1)+c' +0m —2) + T(n — 3)

=c’'+ On)+c'+OOn—-1)+c’+0n-2)+c’'+On-3)+ ... +c

Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
T(1) = c
T(n) = ¢'+ O) + T(n — 1)
=c'+0Omn)+c’'+0n—-1)+T1T(n - 2)
=c'+ 0On)+c’'+60n—-1)+c"+0n—-2)+T(n—3)
=c'+ O+’ +0On—1D+c'+0n—-2)+c'+0n—-3)+... +c

= O(n?)

