Lecture 23

Introduction to Dynamic Programming

Source: Introduction to Algorithms, CLRS
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Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Let’s learn DP through an example!
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Rod Cutting

Rod-Cutting:
Input: A rod of length 7 inches and an array p[1 : n], where p[i] > 0O is the price of a rod of

I inches long rod.
Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

Example: n =4, p = nn

Possible cuttings for alength4rod: (4) (1,3) (2,2) (1,1,2) (1,1,1,1)
Profit earned: ¢ 0 10 7 4

\

Maximum profit
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Brute Force Solution

Brute force approach:
e Find all possible cuttings of the length 7 rod.

® Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every ith inch. Generating all cuttings this

way can lead to O(2") time.
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Let profit, = maximum protit obtainable from an n inches rod. Then,

It length of the first cut in optimal cutting is 1, then profit, = pl1] + profit,_,

It length of the first cut in optimal cutting is 2, then profit, = p|2] + profit,_,

It length of the first cut in optimal cutting is 3, then profit, = p[3] + profit,_»

It length of the tirst cut in optimal cutting is n (i.e. no cut is made), then profit, = pln]

profit, is maximum of these
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A Recursive Solution

Let profit, = maximum protit obtainable from an n inches rod. Then,
e profit, =p|l],itn =1
o profit, = max(p|nl, pl1] + profit,_,, pl2] + profit,_,, ..., pln — 1] + profit)), itn > 1

RC(n, p):
if n ==

return p| 1]

1

2.

3. profit = p|n] i is the length of the first cut
4. fori=1ton—1 < 

S.

6

profit = Max(profit, pli]| + RC(n — i, p))
return profit
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All Good?

Even this recursive algorithm RC is slow and takes O(2") time. (Why O(2")?)

Recursive tree of RC: RC(5.0)
RC(4.p) \Réma)\‘\m:@m‘m(l,p)
— N\
RC(3,p) RC(Z,p/) }C(l,p) RC(Z;{ RC(1,p) R>(l,p)
Rc<2é> \R‘ca,p) 1}:‘<1,p> Rcé/,p)
RC(jl,p)

Observation: RC(3,p) and RC(2,p) is getting computed from scratch multiple times.
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Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an i length rod in profit|i] for future use

after calculating it the first time.

pli] = — 1 means profit for

profit[l : n] = {p[1],— 1,...,— |} e——— .
RC(n, p):
if profitln] # -l €—wo—_____ p fit of n length rod is already computed

length rod is not computed yet

return profit[n]

profitln] = p[n]

1

2

3. 1 is the length of the first cut
4., fori=1ton—1 —

5

6

profit|n] = Max(profit|n], pli] + RC(n — 1, p))
return profit|n]
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as RC(n — i, p) will return immediately.



Time Complexity of RC

Let 7(n) denote the runtime of RC(#n, p)
Then,

(1) =c

Tn)y=c'+ O(n)+T(n—1)



Time Complexity of RC

Let 7(n) denote the runtime of RC(#n, p)
Then,

(1) =c

Tn)y=c'+ O(n)+1T(n—1)



Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
T(1) = ¢
T(n) =’ + O(n) HTn—1)
=c'+ O(n) +He'+Om— 1)+ T(n-2)



Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)



Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)
=c'+ O+’ +Omn—1)+c' +0m —2) + T(n — 3)



Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)

Then,
(1) = ¢
Tn)=c' + O(n) + Tn — 1)
=c'+ O(n) + ' +O(m — 1)+ T(n — 2)
=c'+ O+’ +Omn—1)+c' +0m —2) + T(n — 3)

=c’'+ On)+c'+OOn—-1)+c’+0n-2)+c’'+On-3)+ ... +c



Time Complexity of RC

Let 7(n) denote the runtime of RC(n, p)
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