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Introduction to Dynamic Programming

Source: Introduction to Algorithms, CLRS
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Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Let’s learn DP through an example!
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     Input: A rod of length  inches and an array n p[1 : n]

Example:    p =

Possible cuttings for a length  rod:4 (4) (1,3) (2,2) (1,1,2) (1,1,1,1)

Profit earned: 9 9 10 7 4

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where  is the price of a rod ofp[i] ≥ 0
 inches long rod.i
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Rod-Cutting:

     Input: A rod of length  inches and an array n p[1 : n]

Example:    p =

Possible cuttings for a length  rod:4 (4) (1,3) (2,2) (1,1,2) (1,1,1,1)

Profit earned: 9 9 10 7 4

Maximum profit

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where  is the price of a rod ofp[i] ≥ 0
 inches long rod.i
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Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length  rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every th inch.i
way can lead to  time. O(2n)

Generating all cuttings this
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Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let   maximum profit obtainable from an  inches rod. Then,profitn = n

Price of the first cut For the remaining  length rod, 

we cannot get more than .

(n − i)
profitn−i

p[i] + profitn−i
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Let   maximum profit obtainable from an  inches rod. Then,profitn = n
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Let   maximum profit obtainable from an  inches rod. Then,profitn = n

•   , if profitn = p[1] n = 1

•   , if profitn = max(p[n],  p[1] + profitn−1,  p[2] + profitn−2,  …,  p[n − 1] + profit1) n > 1

 RC :(n, p)
 1.    if   n == 1
 2.        return p[1]
 3.    profit = p[n]
 4.    for  to i = 1 n − 1
 5.        Max   RCprofit = (profit, p[i] + (n − i, p))
 6.    return profit

 is the length of the first cuti



All Good?



All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n)



All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n) (Why ?)O(2n)



All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n) (Why ?)O(2n)

Recursive tree of RC:



All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n) (Why ?)O(2n)

RC(5,p)Recursive tree of RC:



All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n) (Why ?)O(2n)

RC(5,p)Recursive tree of RC:

 RC :

 1.    if   

 2.        return 

 3.    

 4.    for  to 

 5.        Max   RC 

 6.    return 

(n, p)
n == 1

p[1]
profit = p[n]

i = 1 n − 1
profit = (profit, p[i] + (n − i, p))

profit
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 2.        return 

 3.    

 4.    for  to 

 5.        Max   RC 

 6.    return 

(n, p)
n == 1

p[1]
profit = p[n]

i = 1 n − 1
profit = (profit, p[i] + (n − i, p))
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All Good?
Even this recursive algorithm RC is slow and takes  time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

Observation: RC  and RC  is getting computed from scratch multiple times.(3,p) (2,p)
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Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an  length rod in  for future usei profit[i]
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