
Lecture 23

Introduction to Dynamic Programming

Source: Introduction to Algorithms, CLRS

Introduction to Dynamic Programming

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea:

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Introduction to Dynamic Programming

Dynamic programming solves problem by combining the solutions to subproblems,

when subproblems share subsubproblem.

Idea: Instead of solving a subproblem repeatedly,solve it once and store the result in an array.

Let’s learn DP through an example!

Rod Cutting

Rod Cutting

Rod-Cutting:

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n], where is the price of a rod ofp[i] ≥ 0

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n], where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example:

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: , n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p = 1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4

Profit earned:

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4)

Profit earned: 9

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4) (1,3)

Profit earned: 9 9

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4) (1,3) (2,2)

Profit earned: 9 9 10

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4) (1,3) (2,2) (1,1,2)

Profit earned: 9 9 10 7

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4) (1,3) (2,2) (1,1,2) (1,1,1,1)

Profit earned: 9 9 10 7 4

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Rod Cutting

Rod-Cutting:

 Input: A rod of length inches and an array n p[1 : n]

Example: p =

Possible cuttings for a length rod:4 (4) (1,3) (2,2) (1,1,2) (1,1,1,1)

Profit earned: 9 9 10 7 4

Maximum profit

1 5 8 9, n = 4

Output: Maximum profit obtainable by cutting (or not) the rod and selling the pieces.

, where is the price of a rod ofp[i] ≥ 0
 inches long rod.i

Brute Force Solution

Brute Force Solution

Brute force approach:

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Time Complexity:

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every th inch.i

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every th inch.i Generating all cuttings this

Brute Force Solution

Brute force approach:

• Find all possible cuttings of the length rod.n

• Output the maximum profit after calculating profits for all the cuttings.

Time Complexity: You can either cut or not cut at every th inch.i
way can lead to time. O(2n)

Generating all cuttings this

Towards a Better Algorithm

Towards a Better Algorithm

Let maximum profit obtainable from an inches rod. Then,profitn = n

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

Price of the first cut

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

Price of the first cut

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then i profitn =

Let maximum profit obtainable from an inches rod. Then,profitn = n

Price of the first cut For the remaining length rod,

we cannot get more than .

(n − i)
profitn−i

p[i] + profitn−i

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

If length of the first cut in optimal cutting is , then 3 profitn = p[3] + profitn−3

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

If length of the first cut in optimal cutting is , then 3 profitn = p[3] + profitn−3

⋮

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

If length of the first cut in optimal cutting is , then 3 profitn = p[3] + profitn−3

If length of the first cut in optimal cutting is (i.e. no cut is made), then n profitn = p[n]

⋮

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

If length of the first cut in optimal cutting is , then 3 profitn = p[3] + profitn−3

If length of the first cut in optimal cutting is (i.e. no cut is made), then n profitn = p[n]

⋮

Towards a Better Algorithm

If length of the first cut in optimal cutting is , then 1 profitn = p[1] + profitn−1

Let maximum profit obtainable from an inches rod. Then,profitn = n

If length of the first cut in optimal cutting is , then 2 profitn = p[2] + profitn−2

If length of the first cut in optimal cutting is , then 3 profitn = p[3] + profitn−3

If length of the first cut in optimal cutting is (i.e. no cut is made), then n profitn = p[n]

⋮

 is maximum of theseprofitn

A Recursive Solution

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]
 3. profit = p[n]

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]
 3. profit = p[n]
 4. for to i = 1 n − 1

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]
 3. profit = p[n]
 4. for to i = 1 n − 1

 is the length of the first cuti

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]
 3. profit = p[n]
 4. for to i = 1 n − 1
 5. Max RCprofit = (profit, p[i] + (n − i, p))

 is the length of the first cuti

A Recursive Solution

Let maximum profit obtainable from an inches rod. Then,profitn = n

• , if profitn = p[1] n = 1

• , if profitn = max(p[n], p[1] + profitn−1, p[2] + profitn−2, …, p[n − 1] + profit1) n > 1

 RC :(n, p)
 1. if n == 1
 2. return p[1]
 3. profit = p[n]
 4. for to i = 1 n − 1
 5. Max RCprofit = (profit, p[i] + (n − i, p))
 6. return profit

 is the length of the first cuti

All Good?

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n)

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)Recursive tree of RC:

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

(n, p)
n == 1

p[1]
profit = p[n]

i = 1 n − 1
profit = (profit, p[i] + (n − i, p))

profit

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

Recursive tree of RC:

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

(n, p)
n == 1

p[1]
profit = p[n]

i = 1 n − 1
profit = (profit, p[i] + (n − i, p))

profit

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p)

RC(2,p) RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p)

RC(2,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

All Good?
Even this recursive algorithm RC is slow and takes time.O(2n) (Why ?)O(2n)

RC(5,p)

RC(4,p) RC(3,p) RC(2,p) RC(1,p)

RC(3,p) RC(2,p) RC(1,p) RC(2,p) RC(1,p) RC(1,p)

RC(2,p) RC(1,p) RC(1,p) RC(1,p)

RC(1,p)

Recursive tree of RC:

Observation: RC and RC is getting computed from scratch multiple times.(3,p) (2,p)

Dynamic Programming Enters

Dynamic Programming Enters
Idea:

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]
after calculating it the first time.

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}

after calculating it the first time.

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]
 3. profit[n] = p[n]

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]
 3. profit[n] = p[n]
 4. for to i = 1 n − 1

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]
 3. profit[n] = p[n]
 4. for to i = 1 n − 1

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

 is the length of the first cuti

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]
 3. profit[n] = p[n]
 4. for to i = 1 n − 1
 5. Max RCprofit[n] = (profit[n], p[i] + (n − i, p))

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

 is the length of the first cuti

Dynamic Programming Enters
Idea: 1) Define an array profit[1 : n]

2) Store the maximum profit obtainable from an length rod in for future usei profit[i]

 profit[1 : n] = {p[1], − 1,…, − 1}
 RC :(n, p)
 1. if profit[n] ≠ −1
 2. return profit[n]
 3. profit[n] = p[n]
 4. for to i = 1 n − 1
 5. Max RCprofit[n] = (profit[n], p[i] + (n − i, p))
 6. return profit[n]

after calculating it the first time.

 means profit for

 length rod is not computed yet

p[i] = − 1
i

Profit of length rod is already computedn

 is the length of the first cuti

Time Complexity of RC

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Cost of line & 1,2,3, 6

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Cost of line & 1,2,3, 6

Cost of RC(n − 1,p)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Cost of line & 1,2,3, 6

Cost of RC(n − 1,p)

Call to RC computes (n − 1,p) profit[1 : (n − 1)]

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

 RC :

 1. if

 2. return

 3.

 4. for to

 5. Max RC

 6. return

profit[1 : n] = {p[1], − 1,…, − 1}
(n, p)

profit[n] ≠ −1
profit[n]

profit[n] = p[n]
i = 1 n − 1

profit[n] = (profit[n], p[i] + (n − i, p))
profit[n]

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Cost of line & 1,2,3, 6

Cost of for loop from to

as RC will return immediately.

i = 2 n − 1
(n − i, p)

Cost of RC(n − 1,p)

Call to RC computes (n − 1,p) profit[1 : (n − 1)]

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + T(n − 2)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + T(n − 2)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + T(n − 2)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + c′￼+ Θ(n − 2) + T(n − 3)

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + T(n − 2)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + c′￼+ Θ(n − 2) + T(n − 3)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + c′￼+ Θ(n − 2) + c′￼+ Θ(n − 3) + … + c

Time Complexity of RC

Let denote the runtime of RCT(n) (n, p)

Then,

T(1) = c

 T(n) = c′￼+ Θ(n) + T(n − 1)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + T(n − 2)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + c′￼+ Θ(n − 2) + T(n − 3)

 = c′￼+ Θ(n) + c′￼+ Θ(n − 1) + c′￼+ Θ(n − 2) + c′￼+ Θ(n − 3) + … + c

 = Θ(n2)

